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Abstract

Stable queueing systems consisting of two groups of servers , having

exponential service times , placed in tandem and separated by a finite buffer ,

are shc~ n to have a steady-state probability vector of matrix-gecrnetric

form. The queue is stable as long as the Poisson arrival rate does not

exceed a critical value, which depends in a canplicated manner on the ser-

vice rates , the numbers of servers in each group , the size of the intermediate

buffer and the unbiocking rule foflcMed when system becanes blocked . The

critical input rate is determined in a unified manner .

For stable queues , it is shown hci~ the stationary probability vector

and other important features of the queue may be canputed. The essential

step in the algorithm is the evaluation of the unique positive solution of a

quadratic matrix equation .
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Queueing systems, blocking , buffer mcdels, canputational probability
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1. Introduction

The queueing model consisting of two units in series with a finite

intermediate ~.thting roan has an extensive literature , dating back to 1956

with the work of G. C. Hunt [9]. The study of blocking in two or more units

in series without intermediate waiting spaces was initiated by B. Avi-

Itzhak and M. Yadin [2]. Further contributions to this model are due to

N. Ii. Prabhu [17] and A. B. Clarke [3].

Models in which there is a finite waiting roan between the t~~ units and

the service times in the first unit have a general distribution were dis-

cussed by T. Suzu]d [20] , M. F. Neuts [11,12] and K. Hildebrand [7],

basically using transform methods which are not readi ly ccmputationally

implemented . The thesis by I. Harinibalsson [5] utilizes a buffer nodel to V

represent a queue with delayed f eedback . The second unit then represents a

holding stage for those customers who will rejoin the queue in frcnt of

Unit I. In this paper and also in that by B. Wong , W. Giffin and R. L.

Disney [22] , the analysis of finite capacity buffer models is carried out

by fairly involved spectral decompositions of the transition probability

matrices . Related models, with finite total numbers of customers ~~re treated

in the papers by K. L. Arya [1] arid 0. P. Sharn~ [19]. These papers also do

riot have an algorithmic orientation .

In recent years , there has been a gr~~ing interest in the development

of ccmputational methods to evaluate the stationary probability vector and

related quantities for tandem queues with blocking . This interest came

primarily fran the reccgnition that these models are useful in the study of

• tt~ behavior of subsystems of canputers . In addition to detailed des-

criptions of several computer-related applications, A. C. Konheim and M .

ReiSer [10] propose an algorithm for the solution of a system consisting of 

——~~~~~ - - - .- - 



- V 
- -

2

two single-server units with exponential service time distributions. They

also allow feedback of sane departures fran the second server to the queue

in front of the first unit . In 1118], these same authors further considered

more elaborate forms of feedback and discussed additional applications in

computer modeling. Iterative numerical procedures of the Gauss.-Seidel

type , such as proposed by F. S. Hillier and R. W. Boling [8], may also be

implemented for these models.

In addition, bounds on the blocking probability were investigated more

recently by F. G. Foster and H. C. Perros [1-f ]. A particularly detailed study

of diffusion approximations In tandem queues is due to G. Newell [15,16].

The recent paper by J. M. Harrison [6] is also relevant in this context.

It is the purpose of this paper to show that a large number of buffer

models with exponential servers may be numerically solved in a unified way.

The key result identifies their stationary probability vector in a (nodi—

fled) matrix-geometric form. Appropriately partitioning that vector x as

Q~O’ ~l’ 
...) , we show that

i—rfl .x1~~~~,_1 R , fori>r-1,

where r is the number of servers in the first unit. The matrix R is the

unique positive solution to a matrix quadratic equation . The spectral

radius of R is less than one. The r vectors ~~~~~~~~~~ are also uniquely

determined .

The approach, which is used here, is already implicit in the thesis of

V. Wallace [21], but the proofs are based on further refinements and genera-

1izatia~s given in Neuts E13,1’].
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De tion of the Model

The system consists of units I and II and a finite intermediate buffer.

Unit I consists of r parallel exponential servers , processing customers at

the same rate a. In Unit II, c parallel exponential servers process cus-

tomers at the camon rate f3. Arrivals to Unit I occur according to a haw~-

geneous Poisson process of rate A .  (See Fig. 1.)

The servers in Unit II can be active as long as there are customers,

who have canpieted a pass through Unit I and are requesting their service .

There are M-c-l > 0 places in the buffer, so that at most M-l customers can

be either waiting in the buffer or being processed by one of the servers in V
Unit II. If the number of customers who have completed a pass through Unit I

bit have not cleared Unit II reaches M , one of the servers in Unit I becomes

blocked.

Depending on the application, the blocking of one or more servers in

Unit I may affect the ability of the urb locked servers either to accept a

customer for service or to ccznplete a service in course . We shall assume

that when the number of blocked servers in Unit I reaches r~ , 1 < r~ < r ,

all unblocked servers in Unit I also cease service . This situation will be

referred to as full blocking.

In a partially blocked system , when a service completion in Unit II

occurs, one of the blocked servers of Unit I releases his customer into the

buffer. This server may now again initiate a service .

Next we specif y the unbiocking rule. In a fully blocked system there are

H + r~ - 1 customers who have cxtnpleted a pass through Unit I and are re-

questing service in Unit II • We define an integer k~ , 0 < k~ < M+r~-2.

When the number of customers, who have not been cleared by Unit II, drops to

k~, all interrupted services in the servers in Unit I resume and any free

—~~~~~~~ 
--- ~~~~~~~~~~~~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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servers can again initiate services.

We shall allow a feedback loop of departures fran Unit II back to the

queue in front of Unit I . With probabili ty 0 ’ 1 - 0 , 0 < 0 < 1, a cus-

tomer who completes a service in Unit II leaves the system. Feedback

occurs with probability 0.

In order to concentrate only on parameters which have substantial sig-

nificance, we shall not discuss further extensions in which customers may

leave the system fran Unit I or may enter feedback loops from the buffer to

Unit I or fran Unit II to the buffer. The relevant matrices which govern

such cases can be constructed easily ; the theorems and a].gorithns discussed

below carry over routinely.

We also make the standard independence assumptions . All service times

and interarrival times are mutually independent nandan variables . Fran a

numerical viewpoint, it is routine to consider extensions such as the case

where the rate of the Poisson arrival process depends on the number of

blocked servers in Unit I , but in order not to add to the number of para—

meters of the model we shall not pursue this topic further .

Notational Convention

The material in this paper involves a large number of Jacobi matrices ,

whose detailed definitions require display. A matrix such as V

0 b0 c0 0 0

1 a1 b1 c1 0

2 0 a2 b2 c2

m-2 am_2 bm 2  0m 2  0

rn-i 0 am_i bm i  cm_i

m 0 0 am bm

-~ - - -~~ ~~~~~~ -~ V~ -- - -~~~~



5

will be displayed as V
c c ... c c c0 1 m-3 m-2 rn-i

b b b ... b b b0 1 2 m—2 rn—i rn

a a a ... a a1 2 3 rn-i m

2. The Structure of the Markov Process

Under the assumption of exponential service times for the servers in

Units I and II , the queue ing model may be described as a continuous-parameter

Markov chain on the state space { (i , j ) , I > 0 , 0 < j < N }, where N is a

finite nonnegative integer. The index i will denote the number of customers

queued up or in service in Unit I. Such customers will be called 1-cus-

torners. Upon completion of a pass through Unit I, a customer becomes a

Il-customer. We note that because of the possibility of feedback, a cus-

tamer may be termed a I- or a lI-customer several times in succession before

leaving the system. The role played by the index j  is more complicated to

describe and will be spelled out for the specific cases discussed below .

In all cases, however , the infinitesimal generator P of the Markov

chain ~-‘ii1 have the structure of a block-tridiagonal matrix of the form

A02 A12 ... Ar_3 ,2 Ar_2,2 A2 A2
(l) P~~~~A A A . A A A A01 11 21 r—2 ,1 r—l ,l 1 1

A
10 

A20 A
30 ~~~~~ A~~1,0 A0 A0 A0

where all entries are square matrices of order N + 1. The rows in the

block-partitioned matrix correspond to the sets of states

{(i,O),(i,l),...,(i,N)}, for i > 0 .

We shall now give the detailed definitions of these blocks for various

models of increasing complexity.

--
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Moici A

Unit I blocks as soon as there are M IT-customers in th~ system. All

c servers in Unit II are busy; there are M—c-1 customers in the waiting

roun and one server in Unit I has completed service of a customer who

cannot enter the waiting roan. Unblocking occurs as soon as a departure

from Unit II occurs. In terms of our general description, Model A corres-

ponds to r~ 1, ~~ M—l.

In this case N M. The matrices A0, A1 and A2 are given by

rcz rc~ ... ra rc~.

A0~~ 0 0 0 ... 0 0 ~

0 0 0 . . .  0

0 ... 0 0 ... 0

A
1 

-A—rc t  —A— r c x —~ . . .  —A—ra— (c—1)~ —X—rc~—c~ ... —A— r cz —c~ —A—c e )
2~0’ c~O ’ cr30 ’ cBO ’

I

0 . ..  0 0 . . .  0 0

A2~~ A A . . .  A A . . .  A

~O 2~0 . .. c~0 cr30 . . . c~0

and for 1 < 1 < r-1,

:La la

A. 0 0 0 ... 0 03~0

0 0  0 ... 0

For 0 < I < r— l , the rrutrices A12 A~ , and the matrices A11 are given by

0 ... 0 0 ... 0 0

A —

il~~ 
... ...

~o ’ 2~0 ’ ... c80 ’ c~0 ’ ... c~8t

I

-~~~ 
- V - - -
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The asterisks correspond to the negative diagonal entries, which are such

that the row sums of the matrix P are zero .

Model B

This model is as the preceding one , except that full blocking occurs only

when r~ , 1 < r~ < r , servers in Unit I are blocked . The index j row ranges

fran 0 to N + r*_l and denotes the number of Il-customers in the system.

Unbiocking occurs again upon a subsequent departure from Unit II , which car- 
V

responds to the case k~ = N + r*_ 2.

The blocks in the partitioned matrix P are now of order M + rC . They

are obtained by augnenting the blocks in Model A in a systematic manner.

Specifically

ra (r— 1)a (r—2 ) ct ... (r—r~+2)a (r—r~+1)a

0 0 0 ... 0 0
A~U ... 0 0 0 ... 0

1’
N M+r~-1

... 0 0 0 ... 0 0

c80 ’ cOO ’ cOO ’ ::i cOO ’

... 0 0 0 ... 0 0

... A A A ... A A

cOO cOO c8e ... cOO

where the asterisks stand respectively for the entries —A— cO— (r— l)c* , .. •1
_A—c 8—(r-r~+1)a , -A-c O, chosen so that the row sums of P are zero . 

~~~~~~~~~~~~~~~~ ----~~~~~~ --- ----- -- ~~~~~~~
_— -

~~~~~~~~
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The matrices A10 are given by

... Ia min(r— 1,i)a min(r—2 ,i)a ... miri(r_r’:+l,i)a

. . .  0 0 0 . . .  0

0 0 0 ...

1’ C
M

for 1 < 1 < r-l.

For 0 < 1 < r—l , the matrices A12 = A2 and the matrices A11 are given by

0 0 .. .  0 0

A. = ...:ii

cOO ’ cOO ’ cOO ’

The asterisks correspond to the negative diagonal entries , which are

such that the row sums in the matrix P are zero .

Model C

In this model, we add further complexity to Model B by assuming that

when full blocking occurs, Unit I docs not become unblocked until the number

of Il-customers drops to k~. In most cases of interest, we will have

c < k~ < M+r~-2 , and in order to limit the number of variants , we shall assuir~
that this is the case . The case k~ M+r~’~-2 corresponds to Model B, so we

only need to discuss the cases where c < ~~ < M+r;’:_3.

We now consider the indices j:

0 , 1, ... , M—l, N, . . . ,  M+r C_ 1, M+r~—2 , M+r~~i~, . . . ,

The index values with a bar correspond to the situations where the Unit I
is blocked , althDugh fewer than M+r~-l Il-customers are in the system.

The bkcks in the partitioned matrix P are now matrices of order

2M+2r*_k~_2.

-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ --
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The matrices A0 and A. 0, 1 < i < r—l, for this model are obtained by

adding M+r&.k~ .2 rows and columns to the corresponding matrices for Model

B. These rows and columns are identically zero.

The matrices A1 and A. 1, 0 < i < r-1, are obtained by adding M+r~-k~-2

rows and columns to the corresponding matrices for Model B , and changing

the row with index M+r~- 1. The diagonal elements to be added are all equal

to -A-cO. To the right of these diagonal elements we add an entry cOO ’,

except for the last row, where the entry cOO ’ is placed in the column

labeled k~. In the row with index M+r~-l the entry cOO ’ should appear

imnediately to the right , rather tban to the left of the diagonal entry.

All other added elements are zero.
The matrices A2 and A12, 0 < i < r-l, are similarly modified, with

entries A and cOO now playing the role of the quantities -A-cO and cOO ’.

We see that in the presen t model, the matrices are no longer Jacobi

matrices, but remain highly structured sparse matrices . The theoretical

results in this paper do not depend on the detailed structure of the blocks

in the partitioned matrix P , but particularly when the order of these

blocks becomes large, their spars ity may be exploited to economize on the

storage and processing time requirements of the algorithm.

3. Quasi-Birth-and-Death Process

Consider an irreducible continuous parameter Markov chain with state

space {(i, j); i > 0, 0 < < N) and infinitesimal generator P of the fc~~n (1).

I~~~~Vt us denote by x the vector of steady-state probabilities, associated to

p, x P = 0, x e = 1, and define the conservative stable matrix A by A =

A0 + A1 
+ A2. We assume that A is irreducible and denote by n its vector

of steady-state probabilities, i.e. it A = 0, it e 1. Each component of w
is strictly positive. In the tandem queue models considered here, A will
obviously be irreducible. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We par tition x as x (~~~ , x1
, . . .) , where each vector x. has N+l

components. We shall examine below the existence of a solution of the form
i—r4 1

= R for i > r-l , where R has a spectral radius strictly less

than one (sp (R) < 1). For such a solution to exist , we must have that

~~ A
0 1 

+ A1 , 0
~ A1,2 + 

~i+l A1÷1,1 + 
~i+2 A1~2 0  = 0 , for 0 < i  < r— 3 ,

(2 )  
~~~2 Ar_2 ,2 + 

~r—1 
A~~11 + 

~~~ 
A0 = 9,

~r i  R
1~~~l (A 2 + R A, + R2 A0 ) = 0 , for i > r-l.

We shall show that in the positive recurrent case, a strictly positive

probability vector x of the stated form exists, for which the matrix R is a

nonnegative irreducible matrix of spectral radius sp(R) less than one and

such that A2 + R A, + R2 A0 = 0.

We now have to make several technical assumption s that are satisfied

for the models we consider:

a. A1 is nonsirigular . By Wallace [21] , Theorem 3.1, a sufficient

condition is that A1 e < 0 which n~ans that from any state (i, j) , i > r ,

it is possible to move in one step to a state (i+1, j ’)  or (i—l , :j ’ ) .  By

Wallace [21], Lerrn-~a 3.~ , Al’ is a nonpositive matrix ‘.-~~~~~~. Rtrictly negative

diagonal elements . 
-

b. The matrix C2 = -A2 Al
1, has at least one non zero element in each

row. A sufficient condition is that all diagonal entries of A2 are strictly

positive, which means that arrivals can occur when the system is in any state

(i , j) ,  i > r .

c. If we define C0 
= —A0 Ac

1 and C = C
0 

+ C2, we assume That C is

irreducible .

The equation A2 
+ R + R2 A0 0, may row be rewritten in the form

(3) R = C 2
+ R 2 C0.
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- . Lianuia l

The matrix C has a maximal eigenvalue equal to one with corresponding

left arid right eigenvector , respectively proportional to it and A1 e.

Proof:

a.

since it A = 0.

b . C A1 e -(A 0 + A 2 ) e =  ( A 1 _ M~~~~~Ai~~ ,

since A e~~~O.

Define the sequence {R(n) , n > 0) of matrices as follows:

R( 0) 0 ,

R(n+l) C~ + R(n) 2 C0, for n > 0.

Theorem 1

If it A0 e < i i  A
2 e, the equation R C2 + R2 C0 has a unique solution

R for which R > 0, sp(R) < 1. This solution is R(n) and sp(R) = 1.

If ~~A0 e > ~~A2 e, the equation R = C2 + R2 C0 has a unique solution

R for which R > 0, sp(R) < 1. This solution, R(n), is the minimal sol-

ution to the equation and is irreducible.

Remark

Before proving the theorem, we observe that assumptions b. and c. above

are needed to prove that any matrix R satisf ying equation (3) is irreducible .

In each of the buffer models that we consider , one can show easily that in

fact R(n) is a strictly positive matrix.

Proof

This theorem is proved by repeating almost verbatim the argument given

in [14] , Theorems 1 and 2 , Lemmas 2 , 3 and 4. We only indicate the main

steps of the proof here:

- For all n , w R(n) < ,~, hence sp[R(n)] < 1, for all n. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— For all n , R(n+l) > R(n), therefore, the sequence converges -

monotonically to a matrix R such that

R = C2 + R2 C0 
> 0,

i R < i r , sp(R) < l.

- Any imatrix R > 0, with sp(R) < 1, which satisfies R = C2 + R2 C0,

is irreducible; its maximum eigenvalue n is a solution of the equaticn

n 0(e), where for 0 < z < 1, 0(z) is the maximal elgerivalue of the irre-

ducible matrix C(z) = C2 + z2 C0 .

- The equation z = 0(z), 0 < z < 1, has the unique solution n = 1,

1ff o ’(l- ) < 1. If e’(l-) > 1, that equation has t~o solutions:

= < l a~~ 1. Moreover , o ’ ( l— )  = v C’(l) u, where v arid u -are

respectively the left and right Perron-Frobenius eigenvectors of C , nor—

malizedso t h a t v e l, v u = 1 .  However, v ir and u (ir A1 eY1A1e,

so that 0 ‘( 1—) = -2 it A~ e (~r A1 e)~~ . Clearly o ’(l-) < 1, if and only if

-2 it A2 e > it A1 e, (as A1 e < 0) or equivalently ,

ii A2 e < -it (A1+A2
) e -it (A—A0 ) e it A0

- The matrix B. = R(n) is the minimal solution to the equation,

R = C2 + R2 C0, in the set of nonnegative matrices with sp(R) < 1. This

matrix has as its spectral radius the smallest positive root of z = 0(z) ,

and is the only such matrix .

We now discuss the characterization of the vectors ~~~~~, ...,  x 1, in

the case where it A0 e >  ii A2 e. By repeating an argument given in Neuts [131,

one may show that this is the only case for which the Markov process P is

positive recurrent .
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Let x~ = (~~~, x1, . ..,  
~~~~~~~~ and

A ... A A02 r—3 ,2 r—2 ,2
= A01 A~~ ... A~~2 1  A~~11 + R A0

- A10 A20 ... Ar_i ,0

P~ is an infinitesimal generetor .
Proof

Since P is an infinitesimal generiator and R > 0 , all off—d iagonal
elements of P~ are non-negative .

To prove that P~ e 0 , one needs only consider the last N+i rows of
P* , since the other rows are identical to rows of P. However

Ar_l,0~~~
+(Ar_ll +PAO) e = _ A

2 e + R A 0 e

= —A2 e + R A0 ~~ • 
+ v~O 

R’~ (A 2-+-RA1+R 2A0
) e

R(I-RY1 (A0+A1+A2
) e = 0.

H Len~~~~

If Ar_i,1 + R A0 is irreducible , then P~ is irreducible .
Note that this condition is not necessary but obviously holds in the
models i~~ consider.

Proof

P~ is irreducible if and only if for all (i ,j ) and (i’ ,j ’ )

(i , i’ = 0 ,1, ..., r— 1; j ,  j ’  = 0 ,1, . ..,  N) there exists in P~ a path from
(i,j) to (i’ , j ’) .  As P is irreducible, there exists in P a path for all
such (i ,j) and (i ’ , j ’) .

a. The path in P involves only states (i” ,j”) with 0 < 1” < r—1 .
Then the same path exists in P~ .
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b. The path in P involves som e state (i” ,j”) with i” > r .

Let (r—l ,j1) and (r—l ,j 2
) be defined as follows: (r—l ,j1

) is the last

state in the path before passage for the first time through a state (i~~~,j~~~)

wi .th i:’~ > r ; (r-l ,j 2 ) is the first state in the path after passage far the

last time through a state (i~ ,f)  with i~ > r. By the structhr’e of F, those

states exist and in fact i~ = i~ r.

If Ar_i 1 + R A0 is irreducible, there exists a path from (r-1,j 1) to
- -

,

. . . .(r-l ,j 2 ) involving only states (r-1,j ”) and , therefore, there exists in P~

a path fran (i ,j) to (it ,j T ) .

Theorem 2

Under the assumpt ion of Lemma 3 and ii A0 e it A~ e, let R >  0 be the

minimal solution of R = C2 + R2 C0 . Let X ’: = (
~~ , X~~, ..., xa

1) be a

solution of x~ P~ = 0 , then x~ has components all of the same sign .

Furthermore x may be normalized by

r—2 I

(4) ~ x~ e + x~ (I—R )~~ e = 1.
v 0~~~ 

—r— 1 —

The vector x = (
~~~, x1, . ..)  with

(5) x1 x~ , for 0< i < r - l ,

i—r+lx. = x” R , for r—l < 1,
—i —r--l —

is the unique, strictly positive steady-state probability vector of the

matrix P.

The proof is now obvious .

Remark

Since R is irreducible and sp(R) < 1, (I -R)~~ exists and is strictly

positive .
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Corollary 1

(6) RA 0 e A 2 e.

Proof

R = C2 + B.
2 C0 = -A2 A~’ -R2 ~~

hence

R A1 e = -A2 e - R 2 A0 e ,

and

-R (A 0+A2
) e = -A2 e -B.2 A0 e ,

(I-R) A2 e = ( I-R ) R A0 e.

Since I-R is nonsingular, Foimula (6)  follows.

R~~ark

In the tandem queue models, considered here, A0 e is the vector of

rates of departure fran Unit I when all servers are busy . A2 e is the

vector of rates of arrival to the queue in front of Unit I. This

corollary shows that B. plays a role similar to a traffic coefficient. In

numerical computations , this relation serves usefully as an accuracy check

on the evaluation of B..

4. Explicit I~ rms of the Equilibrium Condition

For the specific versions A, B and C of the buffer model , the equili-

hrium condition ii A0 e > it A2 e , may be explicitly written in terms of the

parameters of the model . Although the analytic expressions of these expli—

cit forms are complicated , they all are of the general form

(7) A < ( 1 — O ) r a  ‘V

where 0 < ‘~‘ c 1, and V is a function of all the parameters o~ the model ,

except for A and 0.

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The quanti ty (1-0) rct is the critical input rate of a system consisting

only of Unit I with a feedback probability 0. The entire right hand side of

(7) may be interpreted as the critical input rate A to the system under

consideration. The dependence of A ~ on the various parameters of the model

provides us with a readily accessible means of comparing the effects of buffer

size and unblocking nales . It nnist be borne in mind, however, that queues far

which A is close to or equal to A~ will exhibit the typical , frequently

undesirable , long-range fluctuations inherent in near-critical queues.

Theorem 3

The vector ii and the equilibrium condition it A0 e >  it A2 e , are given

by:

For Model A

(8) = 
[°

~
‘ iT(~) 

+ 

~~~ ~~~ 
(
~Y~]’

~~~ ~~~r it
s

, for l < j  < c ,

II. = —i- (~
‘) it

0
, for c < j  < M.

M—l
(9) A < (1—e ) rz ~ ~r .  ( l—e ) ra

j 0  ~ -

For Model B (2 < r~ .z r)

( 10) it O = [:;
1 

~~~~~~~~~ 
+ 

~~~ ~~ 
(r~)~+ 

~~ ; : :‘(~
)
~ ~~~€- 2 -1

li
i 

~~~~~~ 

‘
~~~
‘ f 2 r l < j < c ,

c° fr a \3
it . 

~~-r (
~~/ ~~ for c < j  < M ,

1!
j 

= ~~ (~~ )i 
i~~(1_ 

~~~~~ 
for M+l < j < M + r’~—1.



~
- - .

~
-- -~ —~~~~~~~~~~ - — - -

~~~~~~~~~~~~~~~
- --— -

1~~7

fM _ i r~-l f -\(11) A < (1—a ) ra I y ,~~. + ~ I i  — 1

~ j = O -~ j l  ‘ 
P 

~

= ( 1—0 ) rc~ (i — 11M+rC l  
— iT~~~j1~

)

For Model C (1 < ~~ < r , c < k~ < M+r~-2)

We shall give detailed formulas only for the most useful case where

c < k~ < M-1. The equations for the other cases are entirely similar . We

denote by 
~k +i’ ~~~ ~~~~~~~~~ the components of ii corresponding to the indices

j = k~ I, ..., M+r~-2. The explicit formulas far the components of it are

uninspiringly canplicated , but their numerical values may readily be computed

by solving the linear equations

(12) = ~~ for 1 < j < c ,

ii. = ~~~~~
- i t .  , for c < j  < k~ ,j  c8 j—l — —

i t .  7t
~j l  — 

~k~+1’ 
for k~+i < j < H ,

lt
M+j 

= — 

~) 
(~

) itM+j~l — 

~k~+l’ far 1 < j  <

c M-fr*_l r~—1 — 1
= 

~M+r~:_2 = = ‘~k~+1 
= 

~ (~i~ ~~~~~ 
(1 —

where
r~L2, ~h h ,- •.. ~ r~-l r ‘~ M-)~~-1, \h + r~— 1

~ it ( 1 _ ~~—~~-~~~+ it ~C~~ ~ v 1  
‘
~ r ,, ~~ r ~ h=o

Finally 
~~ 

is obtained fran the normalizing condition it e = 1.

IN—i r~-1 f . 1(13) x < ( 1—0 ) r~ + 

~~~~ 

(~i —

Proof

We shall only sketch the proof for Model C. The equations ii A = 0

may be written as

_ _ _  - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~

--
~~~~~~~~~~

—-
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(1t~) _
~~

-
~~ 

-rr + = 0 ,

Pa -it . — (r s-~~ ) it . + (j+1)ftrr . 
~ 

= 0 , for 1 < j  < c—i ,

r~ it~~~~1 
— (~~+c~) -rr~ + c~ + 6 j , k~ ~~ ~k~+1 =

f o r c < j  < H-i ,

(r—j )cz ir~~~. 1 
— 1~

i_ 1
~ 

+ cf3J ir~ .. + c~ iTM+~
. +l = 0 ,

for 0 < j  < r ~—3 ,

(r~re+2)a itM+r ~ 3 — ~ r—r~+1)~ + c~3] itM+~~~2 
= 0 , (for r~ > 2)

(r—r~+l)a iTNl+ 2 
— ~~ iTM+ . .l  = 0,

itH+r~• 1  = 
~~~ +~ ‘~

;
~~~‘ 

= =

These are clearly equivalent to

(15) ra = min(j ,c)8 for 1 < j <

ra i t .
1 

= cB rt~ + c~ ~kefl’  for’ k~+l < j < H ,

(r—j)c1 -iTM+j l = ci3 + cf3 for 1 < j  < r ~—2 ,

(r—r ”~+l)ct itM+r~_2 
= C~~

TT
~1+r ••• l  = itM+r~~2 = =

Equating the expression recursively computed for it
M4r l ~dth 

~
‘k~+l’ “~~

obtain the stated formula relating 
~~~~ 

and it
0

.

The inequality -it A0 e >  it A~ e, is equivalen t to

c M
A < ~ 

( ra it- . — j 80 -rr. )  + ~ (rail . — c$0-ir.)
j=l ~ =C+~. I

+ 
1 

[r_ ~~ 1T
M+j 1 — cB 0 -ITM+i] 

— c~ a (M+ r~—k~—2 ) ,

and by using the equations (14) , we obtain Fonnula ( 13) .
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Remarks

1. It is prefe rabl e not to write the geometric sums in (8) and (10) in

closed forms, so that we do not have to wr ite separate expressions for the

case where ra = c8.

2. For r c = 1, and A chosen , without loss of generality , to be equal to

one , we obtain for Model A that the queue will be stable if and only if

M v M-1 v
~ (~~~

‘
)< (l—0)a 

~v o  8 v=O

This agrees, after elementary manipulations , with the conditions (2) for

ct ~ 8, and (3) for ci = 8, stated in Thrn 2 of Konheim and Reiser (1110] , p.

33 4) .  A minor correction is , hc~ ever , needed in the statement of that theorem.

Condition (1), i.e. (1.-a) mm (a ,8) > 1, is claimed to be the equilibrium

condition for the system where H = ~ . As it is implied by one of the other

conditions, depending on whether a ~ or ci = 8, its inclusion in the

stabili ty condition far finite H is clearly inappropriate .

5. The System Considered at Service Completions in Unit I

• Upon considering the n~r~L~rn of I- and Il-customers inrnediately after

service completions in Unit I, we obtain a Markov chain with the states

(i , j) , where i > 0 and j = 1, . . .,  M+r’~-l. In the interest of notational

simplicity , we shall j~resexve the earLier state space , but note that since

service completions during full blocking in Unit I are impossible, the states

with j = 0 and the additional states corresponding to full blocking are

ephemeral . Our formulas will correctly assign “steady-state probabilities ”

equal to zero to all such states and it will not be necessary to adjust

the dimensions of the matrices which are involved.
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1heoreni 1~

The stationary pr -~Thi1 i ] : i ty  vector z = 
~~~ 

...) of the embedded

ftirkov chain at service completions in Unit I is given by

(16) = it 

~~~~~ ~~~~~~ for 0 < k  < r—l ,

k-rI- 2 A0, fork>r-l ,

where -t is given by

rr-i -1 1-i
(17) it = 

~i 
A~~0 ~ + R (I—R ) A0 ~

The zero components in the vectors are ignored.

Prcof

The formulas (16) are readily obtained by a conditioning argument for

-the elementary probabilities. The quantity T 1dt is clearly the elementary

probability that a service completion occurs in (t,t+dt) and the components

of 
~~~ ~~~~~~~~ dt or ~~÷2A0 dt are elementary proi~ bi1ities of transitions

of the type (k+ l ,j )  -+ (k , j ’) .

Corollary 2

The ccx-ponent s with j = H + ‘~ , 0 < u < r~-l , of the vector

rr-i 1
(18) Z = = r f E A10 + 

~~~~~~~~~~ 

R (I — R Y~~ A0 1k0 ~~=l

yield the stationary probabilities that upon completion of a service in

Unit I, v + 1 servers are blocked in Unit I.

It wonid satisfy higher standards of rigor to set up explicitly the

transition probability matrix of the embedded Markov chain and to verify

tha t z is indeed its invariant vector . In order to avoid introducing a

lrU’gC airount ~f extra notation , we shall only do this for the case r 1.

In the p~oce~ ; 
~.

-:-
~‘ shal l also obtain a different formula for Z, which is also
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easily implemented and therefore provides us wi th an accuracy check in numer-

ical computations.

Completely elementary probability arguments yield that for r = 1, the

transition probability matrix of the embedded chain is given by

B0 B1 B2 B3 B4

A0 A1 A2 A3 A4

( 19) P -  0 A0 A1 A2 A 3 ...
0 0 A0 A1 A2 ...
o o 0 A0 ~l

where = (-A~~~A2 )~ (-A~~ A0 ;, and U = (-A~~ A2
) 

~n ’ for n > 0.

The steady—state equations z P = z , will be satisfied by the vectors

defined in Formula (16) provided that

k+1
(20) ~~ Rk~~ A0 = R A0 (—A~~ A2 ) ~~ + E ~~ R”~~ A0 Ak+l i~, 

Ao,

for k > 0 .  —

Since = R (-A0 A~~ ) , and using the explicit form of the matrices

X this equation may be equivalently rewritten as

(21) ~~ [
~k+i 

- (-A2 A~~~~~
1 

- E RV+l 
~~ A0 ~~

1) (-A2 A~~ )~~~~~] A0 =

for k > 0.

In order to see that the matrix in square brackets in zero, write the

equation R = (-A 2 A~~) + R 2 (-A0 A~
1) ,  k+1 times . Multiply the V-th equation

on the left by R” 1  and on the right by (-A2 c~~
_ v+l and sum up.

Finally the expression for -r is obtained fran the normalizing equation

z e = 1.

- - - - - -~~~~~~~~~~~
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Corollary 3

In the case r = 1, the vector Z is also given by

(22 ) Z = (~r A0 ) —l 
~r A0

— it ~~ (A
01+A2 ) (A1+A2Y

1 A0 (ir A0 eY1 A0 II A~~j 1  (A +A )

where II is a matrix with M + 1 identical r~~s given by ir .

Proof

Adding the steady-state equations for the matrix F, we obtain

(23) Z + (A1+A2
)~~ A] = ~~ (-A~~ A2 ) [A 1+A2

_l 
A0] 

_
~~~~

_ (A
l+A2)_ 1

A~~ .

The matrix -(A1+A2 Y~ A0 is a stochastic matrix , wtose first column is zero .

All other elements are strictly positive . It has the left invariant vector

ir A0, whose first component is zero and all other components strictly posi-

tive . It now follcws readily from the theory of finite Markov chains that

the matrix

(24) I + (A1+A2 Y1 A0 + (iTA0eY~1I A0 = (A1+A2)
1 [
~ 

- (irA 0e)~~ A0 fl A0~~ .

is nonsingular . Adding (~~A0 eY1 Z fl A0 = ( i r A0 e)~~ ~~A0, to both sides

of Equation (23) and replacing ~~ R (-A0 A~~) by ~~~ , we obtain the stated

• formula after routine matrix manipulations .

We note that the formula assigns the correct value zero to the first

component of Z. Verifying that the result so obtained agrees with Z

it R (I-RY1 A0, (Cor . 2) provides a partial check on numerical computa-

tions .

6. Remarks on Numerical Computations

The solution , presented here , lends itself to a ready numerical imple-

rrentaticn. Efficient programming, which takes the high degree of sparsity

of the transition probability matrix into account, results in substantial

savings in m~iory storage and execution times . This is particularly worth- 
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while when the program is to be used to study the design and control aspects

of the model . In such studies , one or more parameters of the model need to

vary over a range of values , which may require a substantial number of

executions of the program. In view of the complicated dependence of the model

on each of its parameters , detailed numerical studies appear to be the only

~-ay of obtaining the hard qualitative information needed in probl ems of

design and optimization. Such a num erical implementation is currently being

done - The qualitative results derived from it will be discussed elsewhere.

The first step, after ascertaining that the queue is stable , is to

cx]npute the matrix R. This may be done by successive substitut ions in the

equation R = -A2 A~
1 - R2 A0 c1

~ 
starting with R = 0. The relation

R A0 e = A2 e, proved in L~~ rLa 2 , serves as an accura cy check .

If r > 1, the vectors ~~~, ..., ~~~~~~~~~ are computed by solving the system

of linear equations , discussed in Theorem 2. Since the number of equations lit

tha t system may be very 1ar~e , it is again desirable to take the special.

structure of its coefficient matrix into acccxint . Thi~ may be done as follows .

In the system

(25) ~~~A
01

+ x 1A10 O

x A + x  A + x A 0 , f o r l < v < r - 2 ,—v— i ‘v— 1 ,2 —v v , l —~+1 v+1 ,0 — — —

x A +~~~ (A—r-- 2 r—2 , 2 — r— 1 r—1 ,l u —

the matrices A~~2, 0 < v < r—2 , are clearly nonsingular, so that, using all

but the first equation , we can write the vectors ~~~ , - , as

~~~ ~~~ 0 < v < r-2 , where the matrices C are readi ly computed . The

first equation now yields

(26) 
~r’—l (C~ A01 + C~ A10

) 0 ,

which together with the normalizing condition
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r-2 .,. 1
(27 ) x ~ C e + (I—R ) e I = 1,

v 0  V —  —J
uniquely determines the vector x~~~ and hence also the vectors

x

If there is need to economize on memory storage , as when r arid the

order of the matrices are large , we can avoid storing the matrices C , as

they may be evaluated recursively . This can be done us ing only three arrays

of size N x N and one linear array of length N.  In the latter the vector
r—2
E C e is accumulated. This does not signif icantly increase the processing

time , as the syst ems of equations x A
~2 = d , where d is a known vector,

are particularly easy to solve .

The simplifications , discussed above , are particularly striking when

e = 0 , (no feedba ck ) as the matrices A 2, 0 < v < r—2 , are then scalar

matrices .

The remaini ng computations of the vector x , of var ious moments and of

the marginal queue length densities, as well as the blocking probabilities

are now entirely routine .
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